A Solution to Economic Dispatch Problem Using Augmented lagrangian Particle Swarm Optimization

نویسندگان

  • Vinod Puri
  • Yogesh K. Chauhan
چکیده

The economic load dispatch plays an important role in the operation of power system, and several models by using different techniques have been used to solve these problems. Several traditional approaches like dynamic programming, lambda-iteration and gradient method are utilized to find out the optimal solution of non-linear problem. More recently, the soft computing techniques have received more attention and were used in a number of successful and practical applications. The purpose of this work is to find out the advantages of application of the evolutionary computing technique and Augmented lagrangian Particle Swarm Optimization (ALPSO) in particular to the economic load dispatch problem. Here, an attempt has been made to find out the minimum cost by using ALPSO using the data of three generating systems. All the techniques are implemented in MATLAB environment. ALPSO is applied to find out the minimum cost for different power demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch

In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...

متن کامل

Enhanced augmented Lagrange Hopfield network for economic dispatch with piecewise quadratic cost functions

This paper proposes a simple enhanced augmented Hopfield Lagrange neural network (EALH) for solving economic dispatch (ED) problem with piecewise quadratic cost functions. The EALH is an augmented Lagrange Hopfield neural network (ALH), which is a combination of continuous Hopfield neural network and augmented Lagrangian relaxation function as its energy function, enhanced by a heuristic search...

متن کامل

Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm

Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...

متن کامل

Solving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method

This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...

متن کامل

Solving Economic Dispatch in Competitive Power Market Using Improved Particle Swarm Optimization Algorithm

Generally the generation units in the traditional structure of the electricity industry try to minimize their costs. However, in a deregulated environment, generation units are looking to maximize their profits in a competitive power market. Optimum generation planning in such structure is urgent. This paper presents a new method of solving economic dispatch in the competitive electricity marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012